Classical Special Functions and Lie Groups

نویسندگان

  • Ryan Wasson
  • Robert Gilmore
چکیده

The classical orthogonal functions of mathematical physics are closely related to Lie groups. Specifically, they are matrix elements of, or basis vectors for, unitary irreducible representations of lowdimensional Lie groups. We illustrate this connection for: The Wigner functions, spherical harmonics, and Legendre polynomials; the Bessel functions; and the Hermite polynomials. These functions are associated with the Lie groups: the rotation group SO(3) in three-space and its covering group SU(2); the Euclidean group in the plane E(2) or ISO(2); and the Heisenberg group H4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

Maximal prehomogeneous subspaces on classical groups

Suppose $G$ is a split connected‎ ‎reductive orthogonal or symplectic group over an infinite field‎ ‎$F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is‎ ‎the Lie algebra of the unipotent radical $N.$ Under the adjoint‎ ‎action of its stabilizer in $M,$ every maximal prehomogeneous‎ ‎subspaces of $frak{n}$ is determined‎.

متن کامل

INEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS

In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.

متن کامل

Differential Recursion Relations for Laguerre Functions on Symmetric Cones

Let Ω be a symmetric cone and V the corresponding simple Euclidean Jordan algebra. In [2, 5, 6, 8] we considered the family of generalized Laguerre functions on Ω that generalize the classical Laguerre functions on R. This family forms an orthogonal basis for the subspace of L-invariant functions in L(Ω, dμν), where dμν is a certain measure on the cone and where L is the group of linear transfo...

متن کامل

The Generalized Segal-bargmann Transform and Special Functions

Analysis of function spaces and special functions are closely related to the representation theory of Lie groups. We explain here the connection between the Laguerre functions, the Laguerre polynomials, and the Meixner-Pollacyck polynomials on the one side, and highest weight representations of Hermitian Lie groups on the other side. The representation theory is used to derive differential equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014